A Unified Factors Analysis Framework for Discriminative Feature Extraction and Object Recognition
نویسندگان
چکیده
منابع مشابه
a framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولPattern recognition using discriminative feature extraction
We propose a new design method, called discriminative feature extraction (DFE) for practical modular pattern recognizers. A key concept of DFE is the design of an overall recognizer in a manner consistent with recognition error minimization. The utility of the method is demonstrated in a Japanese vowel recognition task.
متن کاملAutomated Feature Extraction for Object Recognition
Automated image interpretation is an important task in numerous applications ranging from security systems to natural resource inventorization based on remote-sensing. Recently, a second generation of adaptive machine-learned image interpretation systems have shown expert-level performance in several challenging domains. While demonstrating an unprecedented improvement over hand-engineered and ...
متن کاملToward a Unified Probabilistic Framework for Object Recognition and Segmentation
This paper presents a novel and effective Bayesian belief network that integrates object segmentation and recognition. The network consists of three latent variables that represent the local features, the recognition hypothesis, and the segmentation hypothesis. The probabilities are the result of approximate inference based on stochastic simulations with Gibbs sampling, and can be calculated fo...
متن کاملA novel Local feature descriptor using the Mercator projection for 3D object recognition
Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2016
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2016/9347838